Jan 292018

Today is the birthday (1850) of Lawrence Hargrave, an English-born, Australian engineer, explorer, astronomer, inventor and aeronautical pioneer who tends to be forgotten as a  pioneer of aviation and other technologies we now take for granted. Hargrave was born in Greenwich in England, the second son of John Fletcher Hargrave (later Attorney-General of NSW) and was educated at Queen Elizabeth’s Grammar School, Kirkby Lonsdale, Westmorland. He emigrated to Australia with his family, arriving in Sydney on 5 November 1865 on the La Hogue. He accepted a place on the Ellesmere and circumnavigated Australia. Although he had shown ability in mathematics at his English school he failed the matriculation examination and in 1867 took an engineering apprenticeship with the Australasian Steam Navigation Company in Sydney. He later found the experience of great use in constructing his models.

In 1872, as an engineer, he sailed on the Maria on a voyage to New Guinea but the ship was wrecked. In 1875, he again sailed as an engineer on William John Macleay’s expedition to the Gulf of Papua. From October 1875 to January 1876 he explored the hinterland of Port Moresby under Octavius Stone, and in April 1876 went on another expedition under Luigi D’Albertis for over 400 miles up the Fly River on the SS Ellengowan. In 1877 he was an inspector for the newly developing pearling industry for Parbury Lamb and Co. He returned to Sydney, joined the Royal Society of New South Wales in 1877, and in 1878 became an assistant astronomical observer at Sydney Observatory. He held this position for about five years, retired in 1883, and gave the rest of his life to research work.

Hargrave had been interested in experiments of all kinds from an early age, particularly those with aircraft. When his father died in 1885, and Hargrave came into his inheritance, he resigned from the observatory to concentrate on full-time research. and for a time gave particular attention to the flight of birds. He chose to live and experiment with his flying machines in Stanwell Park, a place which offers excellent wind and hang conditions and nowadays is the most famous hang gliding and paragliding venue in Australia.

In his career, Hargrave invented many devices, but never applied for a patent on any of them. He needed the money but he was a passionate believer in scientific communication as a key to furthering progress. As he wrote in 1893:

Workers must root out the idea [that] by keeping the results of their labours to themselves[,] a fortune will be assured to them. Patent fees are much wasted money. The flying machine of the future will not be born fully fledged and capable of a flight for 1000 miles or so. Like everything else it must be evolved gradually. The first difficulty is to get a thing that will fly at all. When this is made, a full description should be published as an aid to others. Excellence of design and workmanship will always defy competition.

Among many, three of Hargrave’s inventions were particularly significant:

  •  Study of curved aerofoils, particularly designs with a thicker leading edge.
  •  The box kite (1893), which greatly improved the lift to drag ratio of early gliders.
  •   Work on the rotary engine, which powered many early aircraft until about 1920.

He made endless experiments and numerous models, and communicated his conclusions in a series of papers to the Royal Society of New South Wales. Of great significance to those pioneers working toward powered flight, Hargrave successfully lifted himself off the ground under a train of four of his box kites at Stanwell Park Beach on 12 November 1894. Aided by James Swain, the caretaker at his property, the kite line was moored via a spring balance to two sandbags (see image). Hargrave carried an anemometer and clinometer aloft to measure windspeed and the angle of the kite line. He rose 16 feet in a wind speed of 21 mph. This experiment was widely reported and established the box kite as a stable aerial platform.

Hargrave claimed that:

The particular steps gained are the demonstration that an extremely simple apparatus can be made, carried about, and flown by one man; and that a safe means of making an ascent with a flying machine, of trying the same without any risk of accident, and descending, is now at the service of any experimenter who wishes to use it.

This was seen by Abbott Lawrence Rotch of the meteorological observatory at Harvard University who constructed a kite from the particulars in Engineering. A modification was adopted by the weather bureau of the United States and the use of box-kites for meteorological observations became widespread. The principle was applied to gliders, and in October 1906 Alberto Santos-Dumont used the box-kite principle in his aeroplane to make his first flight. Until 1909 the box-kite aeroplane was the usual type in Europe.

Hargrave had not confined himself to the problem of constructing a heavier-than-air machine that would fly, but had given considerable effort to the means of propulsion as well. In 1889 he invented a rotary engine which appears to have attracted so little notice that its principle had to be discovered again by the Seguin brothers in 1908. This form of engine was much used in early aviation until it was superseded by later inventions. His development of the rotary engine was frustrated by the weight of materials and quality of machining available at the time, and he was unable to get sufficient power from his engines to build an independent flying machine.

Hargrave’s work inspired Alexander Graham Bell to begin his own experiments with a series of tetrahedral kite designs. However, Hargrave’s work, like that of many another pioneer, was not sufficiently appreciated during his lifetime. His models were offered to the premier of New South Wales as a gift to the state, and it is not clear what really happened. There appears to have been delays in accepting the models, and in the meantime they were given to some visiting German professors who handed them to the Munich museum. Hargrave also conducted experiments with a hydroplane, the application of the gyroscopic principle to a “one-wheeled car,” and with “wave propelled vessels.”

Hargrave’s only son Geoffrey was killed at the Battle of Gallipoli in May 1915 during World War I. Hargrave was operated on for appendicitis but suffered peritonitis afterwards and died in July 1915. He was interred in Waverley Cemetery on the cliffs overlooking the open ocean.

Hargrave modest, unassuming and unselfish, and always refused to patent his inventions. He was anxious only that he might succeed in adding to the sum of human knowledge. Few took note of him in his day, and he tends to be forgotten when it comes to acknowledging early contributions to aeronautics.  Richard Threlfall in his presidential address to the Royal Society of New South Wales in May 1895, spoke of his “strong conviction of the importance of the work which Mr Hargrave has done towards solving the problem of artificial flight.” Threlfall called Hargrave the “inventor of human flight” and later said that he “probably did as much to bring about the accomplishment of dynamic flight as any other single individual.”

I am going to turn to Westmorland in the NW of England, where Hargrave went to school as a boy before migrating to Australia, for my commemorative recipe. Westmorland pepper cake was popular in the 19th century but then was forgotten for most of the 20thcentury. Interest in it has been revived, just as interest in Hargrave’s work in aeronautics is once again coming to the fore. You may need to experiment with the quantity of pepper. It must be freshly ground or cracked black pepper because the complex flavor must come through. The ginger and cloves enhance the flavor of the pepper, so you will need to experiment with proportions so that the pepper is the star.

Westmorland Pepper Cake


3 oz raisins
3 oz dried currants
4 oz sugar
3 oz butter
5 fl oz water
8 oz self-raising flour
½ tsp ground ginger
¼ tsp ground cloves
½ tsp freshly ground black pepper
4 tbsp milk
1 egg, beaten


Preheat the oven to 350°F.

Grease a 7-inch cake tin or small loaf pan, and line the bottom with parchment paper. Grease the parchment paper.

Put the fruit, sugar, butter, and water in a saucepan and bring to a boil, turn down the heat and simmer for 10 minutes. Turn off the heat and let the mixture cool until it is warm, but above room temperature.

Put the flour, spices, and pepper in a bowl and stir to blend. Gently stir in the fruit mixture, milk and the egg. Mix thoroughly without beating.

Turn the mixture into the prepared pan and bake for about 50 minutes or until firm to the touch, or a toothpick inserted in the center comes out clean.

Let cool for a few minutes, and then turn out on a wire rack to cool completely. When cool, dust with powdered sugar.

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>



This site uses Akismet to reduce spam. Learn how your comment data is processed.