Mar 012018

You get a Scandinavian two-fer today, having to do with the Swedish calendar in effect in the early 18th century and beer prohibition in Iceland.

The Swedish calendar (Svenska kalendern) or Swedish style (Svenska stilen) was a calendar in use in Sweden and its possessions from 1 March 1700 until 30 February 1712. It was one day ahead of the Julian calendar and ten days behind the Gregorian calendar. In November 1699, the Government of Sweden decided that, rather than adopt the Gregorian calendar outright, it would gradually approach it over a 40-year period. The plan was to skip all leap days in the period 1700 to 1740. Every fourth year, the gap between the Swedish calendar and the Gregorian would reduce by one day, until they finally lined up in 1740. In the meantime, this calendar would not be in line with either of the major alternative calendars and the differences would change every four years.

In accordance with the plan, February 29 was omitted in 1700, but the Great Northern War stopped any further reductions from being made in the following years.In January 1711, King Charles XII declared that Sweden would abandon the calendar, which was not in use by any other nation, in favor of a return to the older Julian calendar. An extra day was added to February in the leap year of 1712, thus giving it a unique 30-day length. February 30th has never existed in any other modern calendar.

In 1753, one year later than England and its colonies, Sweden introduced the Gregorian calendar. The leap of 11 days was accomplished in one step, with February 17 being followed by March 1. Easter was to be calculated according to the Easter rules of the Julian calendar from 1700 until 1739, but from 1700 to 1711, Easter Sunday was dated in the anomalous Swedish calendar, according to its own rules. In 1740, Sweden finally adopted the “improved calendar” already adopted by the Protestant states of Germany in 1700 (which they used until 1775). Its improvement was to calculate the full moon and vernal equinox of Easter according to astronomical tables, specifically Kepler’s Rudolphine Tables at the meridian of Tycho Brahe’s Uraniborg observatory (destroyed long before) on the former Danish island of Hven near the southern tip of Sweden. In addition to the usual medieval rule that Easter was the first Sunday after the first full moon after the vernal equinox, the astronomical Easter Sunday was to be delayed by one week if this calculation would have placed it on the same day as the first day of Jewish Passover week, Nisan 15. It conflicts with the Julian Easter, which could not occur on the 14th day of the moon (Nisan 14), but was permitted on Nisan 15 to 21 although those dates were calculated via Christian, not Jewish, tables. The resulting astronomical Easter dates in the Julian calendar used in Sweden from 1740 to 1752 occurred on the same Sunday as the Julian Easter every three years but were earlier than the earliest canonical limit for Easter of March 22 in 1742, 1744 and 1750.

After the adoption of the Gregorian solar calendar in 1753, three astronomical Easter dates were one week later than the Gregorian Easter in 1802, 1805 and 1818. Before Sweden formally adopted the Gregorian Easter in 1844, two more should have been delayed in 1825 and 1829 but were not. Finland was part of Sweden until 1809 when it became the autonomous Grand Duchy of Finland within the Russian Empire due to the Finnish War. Until 1866, Finland continued to observe the astronomical Easter, which was one week after the Gregorian Easter in 1818, 1825, 1829 and 1845. However, Russia then used the Julian calendar and Julian Easter so the comparison given above applies: that the astronomical Easter agreed with the Julian Easter about every third year but was sometimes earlier than March 22 in the Julian calendar.

Beer day in Reykjavik, Iceland-Beer festival

In Iceland, Beer Day (Icelandic: Bjórdagurinn or Bjórdagur) is celebrated every year on March 1, honoring the elimination of the 74-year prohibition of beer. Beer prohibition lasted from January 1, 1915 to March 1, 1989. In a 1908 referendum, Icelanders voted in favor of a ban on all alcoholic drinks, going into effect Jan. 1, 1915. In 1921, the ban was partially lifted after Spain refused to buy Iceland’s main export, fish, unless Iceland bought Spanish wines; then lifted further after a national referendum in 1935 came out in favor of legalizing spirits. Strong beer (with an alcohol content of 2.25% or more), however, was not included in the 1935 vote in order to please the temperance lobby—which argued that because beer is cheaper than spirits, it would lead to more depravity.

As international travel brought Icelanders back in touch with beer, bills to legalize it were regularly moved in parliament, but inevitably were shot down on technical grounds. Prohibition lost more support in 1985, when the Minister of Justice (himself a teetotaler) prohibited pubs from adding (legal) spirits to legal non-alcoholic beer (called “pilsner” by Icelanders) to make a potent imitation of strong beer. Soon after, a full turnout of the upper house of Iceland’s Parliament voted 13 to 8 to permit the sale of beer, ending prohibition.

On the first Beer Day, Ölstofan bar owner Kormákur Geirharðsson recalls in The Reykjavik Grapevine:

I remember a lot of drinking and a lot of pissing all night long and the next days, and it [was] not stopping. This was the day Icelanders took the step to try to become civilized. Ölstofan was not open then, but the idea of owning a bar started there.

Following the end of prohibition, Icelanders have celebrated every Beer Day by drinking beer in various bars, restaurants, and clubs. Those located in Reykjavík are especially wild on Beer Day. A Rúntur (pub crawl) is a popular way of getting to know the various bars and beers in this city, many being open until 4:00 a.m. the next day. The legalization of beer remains a cultural milestone in Iceland, and a major seismic shift in the nation’s alcoholic beverage preference. Beer has today become the most popular alcoholic beverage of choice in Iceland.

To celebrate Sweden’s and Iceland’s faltering steps forward in calendar development and beer consumption I present a new Scandinavian recipe for beef stew with beer and rye bread from this website (slightly edited):  The recipe is not unlike other recipes for beef in beer that can be found throughout northern Europe, but it is new for Scandinavia. It does use a different method for browning the meat and onions that is attractive. Use a dark Scandinavian beer if you can find it. I don’t drink alcohol, but as with all such recipes I recommend accompanying the dish with the same beer that you cook with. When cooking with alcohol it is a hard and fast rule of mine not to use anything in the recipe that I would not normally offer to drink.

Scandinavian Beef Stew with Beer and Rye Bread


3 lb/1.4 kg beef brisket, cut into 1 ½ inch (3-4cm) pieces
1 onion, peeled and chopped
3-5 cloves garlic, peeled and chopped
1 tbsp cooking oil
2 carrots, peeled chopped
2 bay leaves
1 tsp black peppercorns
1 handful dried porcini, or other dried mushrooms
1 cup/2.5 dl dark beer
1 or 2 slices dried, dark rye bread, in pieces
1-2 tbsp butter


Preheat the oven to 500˚F (250˚C). Place a heavy cast iron pot with lid in the oven when you turn it on.

When the oven is hot, take the oven-proof dish out. Add the meat, onion and oil. Leave them to brown for 2 minutes, stirring once or twice, then add the rest of the ingredients. Season with salt to taste. Put the lid on.

Return the dish to the oven, reduce the heat to 200˚F (95˚C) and leave for 3-4 hours. Try not to open the dish or pot before serving.

Jan 012018

On New Year’s Eve around the world there’s a certain amount of interest in following the progress of the stroke of midnight, usually starting in Sydney and then hopping from time zone to time zone.  As I write it’s about 10:30 am on January 1st and I’m well in the swing of New Year’s Day, whereas my friends in Buenos Aires, New York and Los Angeles are still waiting. So, I think it’s just as well to continue my discussion from last year about calendars and add something about time zones, because it is on January 1st that many decisions taken about these issues went into effect. Last year I talked about the gradual decision to move to January 1st as New Year’s Day —  This year I’ll talk a little about the Julian calendar and then talk about time zones.

On this date in 45 BCE the Julian calendar went into effect as the civil calendar of the Roman Empire, establishing January 1st as the new date of the new year. Actually, for over 100 years January 1st had been an important starting date in the old Roman calendar, but it was not officially recognized as the first day of the year.  Starting in 153 BCE, Roman consuls began their year in office on January 1st, but it was not until the Julian reforms of the calendar that January 1st took on the significance as the date on which the year changed. Of course, the Romans did not use BC/AD, BCE/CE, or what have you. They dated the year from the legendary founding of Rome by Romulus and Remus, using the abbreviation AUC (ab urbe condita, from the founding of the city). 1 AUC is 753 BCE.

The ordinary year in the previous Roman calendar consisted of 12 months, for a total of 355 days (lead photo). In addition, a 27- or 28-day intercalary month, the Mensis Intercalaris, was sometimes inserted between February and March. This intercalary month was formed by inserting 22 or 23 days after the first 23 days of February; the last five days of February, which counted down toward the start of March, became the last five days of Intercalaris. The net effect was to add 22 or 23 days to the year, forming an intercalary year of 377 or 378 days.

According to the later writers Censorinus and Macrobius, the ideal intercalary cycle consisted of ordinary years of 355 days alternating with intercalary years, alternately 377 and 378 days long. In this system, the average Roman year would have had ​366 ¼ days over four years, giving it an average drift of one day per year relative to any solstice or equinox. Macrobius describes a further refinement whereby, in one 8-year period within a 24-year cycle, there were only three intercalary years, each of 377 days (thus 11 intercalary years out of 24). This refinement averages the length of the year to 365.25 days over 24 years.

In practice, intercalations did not occur systematically according to any of these ideal systems, but were determined by the pontifices. So far as can be determined from the historical evidence, they were much less regular than these ideal schemes suggest. They usually occurred every second or third year, but were sometimes omitted for much longer, and occasionally occurred in two consecutive years. If managed correctly this system could have allowed the Roman year to stay roughly aligned to a tropical year. However, since the pontifices were often politicians, and because a Roman magistrate’s term of office corresponded with a calendar year, this power was prone to abuse: a pontifex could lengthen a year in which he or one of his political allies was in office, or refuse to lengthen one in which his opponents were in power.

If too many intercalations were omitted, as happened after the Second Punic War and during the Civil Wars, the calendar would drift out of alignment with the tropical year. Moreover, because intercalations were often determined quite late, the average Roman citizen often did not know the date, particularly if he were some distance from the city. For these reasons, the last years of the pre-Julian calendar were later known as “years of confusion”. The problems became particularly acute during the years of Julius Caesar’s pontificate before the reform, 63–46 BCE, when there were only five intercalary months (instead of eight), none of which were during the five Roman years before 46 BCE.


Caesar’s reform was intended to solve this problem permanently, by creating a calendar that remained aligned to the sun without any human intervention. Although the approximation of ​365 ¼ days for the tropical year had been known for a long time, ancient solar calendars had used less precise periods, resulting in gradual misalignment of the calendar with the seasons. Caesar imposed a peace during the Punic War, and a banquet was held to celebrate the event. Lucan depicted Caesar talking to a wise man called Acoreus during the feast, stating his intention to create a calendar more perfect than that of Eudoxus. (Eudoxus was popularly credited with having determined the length of the year to be ​365 ¼ days). But the war soon resumed, and Caesar was attacked by the Egyptian army for several months until he gained the victory. He then enjoyed a long cruise on the Nile with Cleopatra before leaving the country in June 47 BCE.


Caesar returned to Rome in 46 BCE and, according to Plutarch, called in the best philosophers and mathematicians of his time to solve the problem of the calendar. Pliny says that Caesar was aided in his reform by the astronomer Sosigenes of Alexandria who is generally considered the principal designer of the reform. Sosigenes may also have been the author of the astronomical almanac published by Caesar to facilitate the reform. Eventually, it was decided to establish a calendar that would be a combination between the old Roman months, the fixed length of the Egyptian calendar, and the ​365 ¼ days of Greek astronomy.

The first step of the reform was to realign the start of the calendar year (1 January) to the tropical year by making 46 BCE (708 AUC) 445 days long, compensating for the intercalations which had been missed during Caesar’s pontificate. This year had already been extended from 355 to 378 days by the insertion of a regular intercalary month in February. When Caesar decreed the reform, probably shortly after his return from the African campaign in late Quintilis (July), he added 67 more days by inserting two extraordinary intercalary months between November and December.

Because 46 BCE was the last of a series of irregular years, this extra-long year was, and is, referred to as the “last year of confusion”. The new calendar began operation after the realignment had been completed, in 45 BCE. The Julian months were formed by adding ten days to a regular pre-Julian Roman year of 355 days, creating a regular Julian year of 365 days. Two extra days were added to January, Sextilis (August) and December, and one extra day was added to April, June, September and November. February was not changed in ordinary years, and so continued to be the traditional 28 days. Thus, the ordinary (i.e., non-leap year) lengths of all of the months were set by the Julian calendar to the same values they still hold today. Remember that fact. Much is made of the transition to the Gregorian calendar that we use today, but, in reality, the reform to the Julian calendar was the BIG change. The years, months, and days in ancient Rome would be completely familiar to us. The calendar before the reform would not be. The Gregorian reform was a bit of minor tinkering because 365 ¼ is a tiny bit too much. Every 400 years the Julian calendar gained 3 days on the sun, so that by the 16th century it was noticeably out of line – hence the need for reform. But . . . the Gregorian year looks exactly the same as the Julian year; it’s just the calculation of when leap years occur that’s a bit different – very, very slightly.  Creating time zones was the next major change.

According to the (apparent) motion of the sun, the time when it is midday on earth is constantly changing. If you live 20 miles west of me, midday, as calculated by the sun, will be slightly later for you than it will be for me. Technically, if you are 20 paces west of me, midday will be slightly later for you than for me, but the difference will be tiny. Midday is always on the move. When you live in a world where people do not move much (except sailors at sea), and where instant forms of communication such as the telegraph and the telephone do not exist, what time it is where you are versus what time it is where I am is of little to no consequence.  Therefore, it was not until the late 19th century, when there were trains and telegraphs, that world times had to be standardized. Thus, in 1885, 25 nations adopted a system of standard time and time zones, based on a proposal put forward by Sandford Fleming several years earlier. After missing a train while traveling in Ireland in 1876 because a printed schedule listed p.m. instead of a.m., Fleming proposed using a single 24-hour clock for the entire world, located at the center of the Earth, not linked to any surface meridian. At a meeting of the Canadian Institute in Toronto on February 8th, 1879, he linked his standard time to the anti-meridian of Greenwich (now 180°). He suggested that standard time zones could be used locally, but they would be subordinate to his single world time, which he called Cosmic Time. He continued to promote his system at major international conferences including the International Meridian Conference of 1884. That conference accepted a different version of Universal Time but refused to accept his zones, stating that they were a local issue outside its purview. It took until 1929 for most countries to accept time zones.


Local solar time became increasingly inconvenient as rail transport and telecommunications improved, because clocks differed between places by amounts corresponding to the differences in their geographical longitudes (four minutes of time for every degree of longitude). The first adoption of a standard time was on December 1, 1847, in Great Britain by railway companies using GMT kept by portable chronometers. The first of these companies to adopt standard time was the Great Western Railway (GWR) in November 1840. This quickly became known as Railway Time. About August 23, 1852, time signals were first transmitted by telegraph from the Royal Observatory, Greenwich. Even though 98% of Great Britain’s public clocks were using GMT by 1855, it was not made Britain’s legal time until August 2, 1880. Some British clocks from this period have two minute hands—one for the local time, one for GMT.

Improvements in worldwide communication further increased the need for interacting parties to communicate mutually comprehensible time references to one another. The problem of differing local times could be solved across larger areas by synchronizing clocks worldwide, but in many places, that adopted time would then differ markedly from the solar time to which people were accustomed. On November 2, 1868, the then British colony of New Zealand officially adopted a standard time to be observed throughout the colony, and was perhaps the first country to do so. It was based on the longitude 172°30′ East of Greenwich, that is 11 hours 30 minutes ahead of GMT. This standard was known as New Zealand Mean Time.

By 1900 (not a leap year in the Gregorian calendar, incidentally), almost all time on Earth was in the form of standard time zones, only some of which used an hourly offset from GMT. Many applied the time at a local astronomical observatory to an entire country, without any reference to GMT. It took many decades before all time on Earth was in the form of time zones referred to some “standard offset” from GMT/UTC. By 1929, most major countries had adopted hourly time zones. Nepal was the last country to adopt a standard offset, shifting slightly to UTC+5:45 in 1986. Today, all nations use standard time zones for secular purposes, but they do not all apply the concept as originally conceived. North Korea, Newfoundland, India, Iran, Afghanistan, Myanmar, Sri Lanka, the Marquesas, as well as parts of Australia use half-hour deviations from standard time, and some nations, such as Nepal, and some provinces, such as the Chatham Islands of New Zealand, use quarter-hour deviations. Some countries, such as China and India, use a single time zone even though the extent of their territory far exceeds 15° of longitude (that is, more than one hour difference from east to west).

Fleming was a Scot, so a Hogmanay recipe is in order for today. Black bun is the classic Scots dish for New Year. It used to be made in the Christmas season and eaten on Epiphany, but now it is a standard dish for Hogmanay. It’s a fairly standard fruit cake but with pastry wrapping it instead of icing.

Black Bun


For the pastry

300g/10½oz plain flour
75g/3oz lard, cubed
75g/3oz butter, cubed
½ tsp baking powder
1 egg, beaten (for glazing)

For the filling

200g/7oz plain flour
300g/10½oz raisins
300g/10½oz currants
½ tsp ground ginger
½ tsp ground cinnamon
½ tsp ground allspice
½ tsp mixed spice (cloves, nutmeg, mace)
¼ tsp ground black pepper
100g/3½oz dark muscovado sugar
100g/3½oz mixed peel, chopped
½ tsp bicarbonate of soda
2 tbsp whisky
1 egg, beaten
3 tbsp buttermilk


For the pastry, sift the flour into a bowl and rub in the lard and butter until the mixture resembles breadcrumbs. Add a pinch of salt, the baking powder and four tablespoons of cold water and mix to a soft dough. Turn out and knead into a ball. Wrap in cling film and leave to chill in the refrigerator (an hour or more).

Preheat the oven to 180˚C/350˚F.

For the filling, mix together the fruit, flour, spices, and bicarbonate of soda in a large mixing bowl. Beat together the egg, whisky, and buttermilk in a small bowl. Pour the wet mixture into the dry mixture and combine well. Take your time and be thorough in your mixing.  You will find dry pockets for some minutes as you mix.

Line a 900g/2lb loaf tin with baking parchment. On a lightly floured surface, roll out two thirds of the pastry to a rectangle large enough to line the tin. Drape into the tin and press up against the sides. Spoon the filling into the tin, pressing down to compress.     Roll out three quarters of the remaining pastry to a rectangle large enough to cover the tin. Dampen the edges of the pastry with water and press the pastry lid on top to seal. Trim the edges and crimp using a fork. Roll out the remaining pastry, along with any trimmings, and use them to decorate the top. Attach them with a little water. Glaze the top with beaten egg and bake for two hours. Remove from the oven and leave to cool in the tin before turning out.