Mar 102019

Today is the birthday (1628) of Marcello Malpighi, an Italian biologist and physician, who is sometimes referred to as the “father of microscopical anatomy, histology, physiology and embryology”. Malpighi was born in Crevalcore near Bologna, son of well-to-do parents. He studied a variety of subjects including Aristotelian philosophy, physics, and medicine at the University of Bologna, and took positions in both Bologna and Pisa teaching philosophy and physics before settling to the study of anatomy in 1660.

Although he conducted some of his studies using vivisection and others through the dissection of corpses, his most productive efforts appear to have been based on the use of the microscope. Because of this work, many microscopic anatomical structures are named after Malpighi, including a skin layer (Malpighi layer) and two different Malpighian corpuscles in the kidneys and the spleen, as well as the Malpighian tubules in the excretory system of insects. Although a Dutch spectacle maker created the compound lens and inserted it in a microscope around the turn of the 17th century, and Galileo had applied the principle of the compound lens to the making of his microscope patented in 1609, its possibilities as a microscope had remained unexploited for half a century, until Robert Hooke improved the instrument ( ). Following this, Malpighi, Hooke, and two other early investigators associated with the Royal Society, Nehemiah Grew and Antoine van Leeuwenhoek were fortunate to have a virtually untried tool in their hands as they began their investigations.

Working on frogs and extrapolating to humans, Malpighi demonstrated the structure of the lungs, previously thought to be a homogeneous mass of flesh, and he offered an explanation for how air and blood mixed in the lungs. Malpighi also used the microscope for his studies of the skin, kidneys, and liver. For example, after he dissected a black male, Malpighi made some groundbreaking headway into the discovery of the origin of black skin. He found that the black pigment was associated with a layer of mucus just beneath the skin. Malpighi seems to have been the first author to have made detailed drawings of individual organs of flowers. In his Anatome plantarum is a longitudinal section of a flower of Nigella (his Melanthi, literally, honey-flower) with details of the nectariferous organs. He adds that it is strange that nature has produced on the leaves of the flower shell-like organs in which honey is produced.

Malpighi had success in tracing the ontogeny of plant organs, and the serial development of the shoot. He specialized in seedling development, and in 1679, he published a volume containing a series of exquisitely drawn and engraved images of the stages of development of Leguminosae (beans) and Cucurbitaceae (squash, melons). Later, he published material depicting the development of the date palm. Linnaeus named the genus Malpighia in honor of Malpighi’s work with plants; Malpighia is the type genus for the Malpighiaceae, a family of tropical and subtropical flowering plants.

Because Malpighi was concerned with teratology (the scientific study of the visible conditions caused by the interruption or alteration of normal development) he expressed grave misgivings about the view of his contemporaries that the galls of trees and herbs gave birth to insects. He conjectured (correctly) that the creatures in question arose from eggs previously laid in the plant tissue. Malpighi’s investigations of the lifecycle of plants and animals led him into the topic of reproduction. He created detailed drawings of his studies of chick embryo development, seed development in plants (such as the lemon tree), and the transformation of caterpillars into insects. His discoveries helped to illuminate philosophical arguments surrounding the topics of emboîtment, pre-existence, preformation, epigenesis, and metamorphosis.

In 1691 pope Innocent XII invited him to Rome as papal physician. He taught medicine in the Papal Medical School and wrote a long treatise about his studies which he donated to the Royal Society of London.

Marcello Malpighi died of “apoplexy” (probably stroke) in Rome on 29th September 1694, at the age of 66. In accordance with his wishes, an autopsy was performed. He is buried in the church of the Santi Gregorio e Siro, in Bologna, where nowadays can be seen a marble monument to the scientist with an inscription in Latin remembering – among other things – his “SUMMUM INGENIUM / INTEGERRIMAM VITAM / FORTEM STRENUAMQUE MENTEM / AUDACEM SALUTARIS ARTIS AMOREM” (great genius, honest life, strong and tough mind, daring love for the medical art).

Given Malpighi’s studies of Leguminosae and Cucurbitaceae here is a recipe for an Italian bean and squash soup.

Tuscan Bean and Squash Soup


1 lb dried borlotti beans
3 quarts beef stock
½ cup chopped canned tomatoes
2 garlic cloves, peeled and sliced
¼ cup chopped celery leaves
dried oregano
½ cup extra-virgin olive oil
1 medium onion, peeled and chopped
2 lb butternut squash, peeled and cut into 1-inch chunks
crushed red pepper


Soak the beans overnight.

Drain and rinse the beans, then transfer them to a stock pot. Cover with stock and bring to a simmer over moderate heat. Cook the beans until almost tender, about 1 hour. Add the tomatoes, garlic, celery leaves, oregano to taste, and ¼ cup of the olive oil. Season to taste with salt. Continue cooking until the beans are very tender, about 1 to 1 ½ hours longer.

Meanwhile, in a large skillet, heat the remaining ¼ cup of olive oil. Add the onion and cook over medium heat until softened but not browned. Add the squash and 1 cup of water, cover and simmer over low heat until the squash is barely tender, about 10 minutes.

When the beans are fully cooked, stir in the squash mixture. Season crushed red pepper to taste and simmer for 5 minutes. Serve with crusty bread.


Oct 202014


Today is the birthday (1632) of Sir Christopher Michael Wren PRS, one of the most highly acclaimed English architects in history. He was accorded responsibility for rebuilding 52 churches in the City of London after the Great Fire in 1666, including his masterpiece, St. Paul’s Cathedral, on Ludgate Hill in London, completed in 1710 (see ). What many people do not realize is that Wren was a notable anatomist, astronomer, geometer, and mathematician-physicist, as well as an architect, and was instrumental in founding the Royal Society, the prime scientific society in Britain to this day. His scientific work was highly regarded by Isaac Newton and Blaise Pascal.

Here’s a small gallery of Wren’s major architectural works just so that I do not ignore that aspect of his life completely.

wren8 wren7 wren6 wren5 wren3 wren2

Now, however, I would like to outline his accomplishments outside of architecture. On 25 June 1650, Wren entered Wadham College, Oxford, where he studied Latin and the works of Aristotle. There was no formal scientific education at Oxford at that time, but there was a circle of scientists who worked together outside their formal studies. Wren became closely associated with John Wilkins, the Warden of Wadham. The Wilkins circle was a group whose activities led to the formation of the Royal Society, consisting of a number of distinguished mathematicians, and experimental natural philosophers (physicists, biologists and chemists), including Robert Boyle and Robert Hooke (see ). He graduated with a B.A. in 1651, and two years later received his M.A. At Oxford then, as now, the M.A. is awarded after 2 years without further study. The degree system is based on the old trade guilds where apprentices become bachelors of the guild, and having pursued their craft for 2 years become masters by producing a “masterpiece.”

Portrait of Sir Christopher Wren

Having received his M.A. in 1653, Wren was elected a fellow of All Souls College in the same year and began an active period of research and experiment in Oxford. His days as a fellow of All Souls ended when he was appointed Professor of Astronomy at Gresham College in London in 1657. He was provided with a set of rooms and a stipend and was required to give weekly lectures in both Latin and English to all who wished to attend; admission was free. Wren took up this new work with enthusiasm. He continued to meet the men with whom he had frequent discussions in Oxford. They attended his London lectures and in 1660, initiated formal weekly meetings. It was from these meetings that the Royal Society, England’s premier scientific body, was to develop. He undoubtedly played a major role in these meetings; his great breadth of expertise in so many different subjects helping in the exchange of ideas between the various scientists.

In 1662, they proposed a society “for the promotion of Physico-Mathematicall Experimental Learning.” This body received its Royal Charter from Charles II and “The Royal Society of London for Improving Natural Knowledge” was formed. In addition to being a founder member of the Society, Wren was president of the Royal Society from 1680 to 1682.

In 1661, Wren was elected Savilian Professor of Astronomy at Oxford, and in 1669 he was appointed Surveyor of Works to Charles II. From 1661 until 1668 Wren’s life was based in Oxford, although his attendance at meetings of the Royal Society meant that he had to make occasional trips to London.

The main sources for Wren’s scientific achievements are the records of the Royal Society. His scientific works ranged from astronomy, optics, the problem of finding longitude at sea, cosmology, mechanics, microscopy, surveying, medicine and meteorology. He observed, measured, dissected, built models, and employed, invented and improved a variety of instruments. It was also around these times that his attention turned to architecture. One of Wren’s friends, another great scientist and architect and a fellow Westminster Schoolboy, Robert Hooke said of him “Since the time of Archimedes there scarce ever met in one man in so great perfection such a mechanical hand and so philosophical mind.”


When a fellow of All Souls, Wren constructed a transparent beehive for scientific observation; he began observing the moon, which was to lead to the invention of micrometers for the telescope. He experimented on terrestrial magnetism and had taken part in medical experiments while at Wadham College, performing the first successful injection of a substance into the bloodstream (of a dog).


In Gresham College, he did experiments involving determining longitude through magnetic variation and through lunar observation to help with navigation, and helped construct a 35-foot (11 m) telescope with Sir Paul Neile. Wren also studied and improved the microscope and telescope at this time. He had been making observations of the planet Saturn from around 1652 with the aim of explaining its appearance. His hypothesis was written up in De corpore saturni but before the work was published, Huygens presented his theory of the rings of Saturn. Immediately Wren recognized this as a better hypothesis than his own and De corpore saturni was never published. In addition, he constructed an exquisitely detailed lunar model and presented it to the king. Also his contribution to mathematics should be noted; in 1658, he found the length of an arc of the cycloid using an exhaustion proof based on dissections to reduce the problem to summing segments of chords of a circle which are in geometric progression.


A year into Wren’s appointment as a Savilian Professor in Oxford, the Royal Society was created and Wren became an active member. As Savilian Professor, Wren studied mechanics thoroughly, especially elastic collisions and pendulum motions. He also directed his far-ranging intelligence to the study of meteorology: in 1662 he invented the tipping bucket rain gauge and, in 1663, designed a “weather-clock” that would record temperature, humidity, rainfall and barometric pressure. A working weather clock based on Wren’s design was completed by Robert Hooke in 1679.


In addition, Wren experimented on muscle functionality, hypothesizing that the swelling and shrinking of muscles might proceed from a fermentative motion arising from the mixture of two heterogeneous fluids. Although this is incorrect, it was at least founded upon observation and may mark a new outlook on medicine: specialization.

Wren contributed to optics. He published a description of an engine to create perspective drawings and he discussed the grinding of conical lenses and mirrors. Out of this work came another of Wren’s important mathematical results, namely that the hyperboloid of revolution is a ruled surface. These results were published in 1669. In subsequent years, Wren continued with his work with the Royal Society, although after the 1680s his scientific interests seem to have waned: no doubt his architectural and official duties absorbed more time.

It was a problem posed by Wren that serves as an ultimate source to the conception of Newton’s Principia Mathematica Philosophiae Naturalis. Robert Hooke had theorized that planets, moving in a vacuum, describe orbits around the Sun because of a rectilinear inertial motion outward from the Sun and an accelerated motion towards the Sun. Wren’s challenge to Halley and Hooke, for the reward of a book worth thirty shillings, was to provide, within the context of Hooke’s hypothesis, a mathematical theory linking the Kepler’s laws with a specific force law. Halley took the problem to Newton for advice, prompting the latter to write a nine-page answer, De motu corporum in gyrum, which was later to be expanded into the Principia.


Wren also studied other areas, ranging from agriculture, ballistics, water and freezing, light and refraction, to name only a few. Thomas Birch’s History of the Royal Society is one of the most important sources of our knowledge not only of the origins of the Society, but also the day to day running of the Society. It is in these records that most of Wren’s known scientific works are recorded.

It was probably around this time that Wren was drawn into redesigning a battered St Paul’s Cathedral. Making a trip to Paris in 1665, Wren studied the architecture, which had reached a climax of creativity, and perused the drawings of Bernini, the great Italian sculptor and architect, who himself was visiting Paris at the time. Returning from Paris, he made his first design for St Paul’s. A week later, however, the Great Fire destroyed two-thirds of the city.

Additionally, he was sufficiently active in public affairs to be returned as Member of Parliament for Old Windsor in 1680, 1689 and 1690, but did not take his seat.

By 1669 Wren’s career was well established and it may have been his appointment as Surveyor of the King’s Works in early 1669 that persuaded him that he could finally afford to take a wife. In 1669 the 37-year-old Wren married his childhood neighbour, the 33-year-old Faith Coghill, daughter of Sir John Coghill of Bletchingdon. Little is known of Faith’s life or demeanor, but a love letter from Wren survives, which reads, in part:

I have sent your Watch at last & envy the felicity of it, that it should be soe near your side & soe often enjoy your Eye. … .but have a care for it, for I have put such a spell into it; that every Beating of the Balance will tell you ’tis the Pulse of my Heart, which labors as much to serve you and more trewly than the Watch; for the Watch I beleeve will sometimes lie, and sometimes be idle & unwilling … but as for me you may be confident I shall never …

This brief marriage produced two children: Gilbert, born October 1672, who suffered from convulsions and died at about 18 months old, and Christopher, born February 1675. The younger Christopher was trained by his father to be an architect. It was this Christopher that supervised the topping out ceremony of St Paul’s in 1710 and wrote the famous Parentalia, or, Memoirs of the family of the Wrens. Faith Wren died of smallpox on 3 September 1675. She was buried in the chancel of St Martin-in-the-Fields beside the infant Gilbert. A few days later Wren’s mother-in-law, Lady Coghill, arrived to take the infant Christopher back with her to Oxfordshire to raise.

In 1677, 17 months after the death of his first wife, Wren married once again. He married Jane Fitzwilliam, daughter of William FitzWilliam, 2nd baron FitzWilliam and his wife Jane Perry, the daughter of a prosperous London merchant.

She was a mystery to Wren’s friends and companions. Robert Hooke, who often saw Wren two or three times every week, had, as he recorded in his diary, never even heard of her, and was not to meet her till six weeks after the marriage. As with the first marriage, this too produced two children: a daughter Jane (1677–1702); and a son William, “Poor Billy” born June 1679, who was developmentally delayed.

Like the first, this second marriage was also brief. Jane Wren died of tuberculosis in September 1680. She was buried alongside Faith and Gilbert in the chancel of St Martin-in-the-Fields. Wren was never to marry again; he lived to be over 90 years old and of those years was married only nine.

The Wren family estate was at The Old Court House in the area of Hampton Court. He had been given a lease on the property by Queen Anne in lieu of salary arrears for building St Paul’s.[8] For convenience Wren also leased a house on St James’s Street in London. According to a 19th-century legend, he would often go to London to pay unofficial visits to St Paul’s, to check on the progress of “my greatest work”. On one of these trips to London, at the age of ninety, he caught a chill which worsened over the next few days. On 25 February 1723 a servant who tried to awaken Wren from his nap found that he had died.

Wren was laid to rest on 5 March 1723. His remains were placed in the south-east corner of the crypt of St Paul’s beside those of his daughter Jane, his sister Susan Holder, and her husband William. The plain stone plaque was written by Wren’s eldest son and heir, Christopher Wren, Jr. The inscription, which is also inscribed in a circle of black marble on the main floor beneath the centre of the dome, reads:



Here in its foundations lies the architect of this church and city, Christopher Wren, who lived beyond ninety years, not for his own profit but for the public good. Reader, if you seek his monument – look around you. Died 25 Feb. 1723, age 91.

It turns out that Wren had some interest in cookery as evidenced by a recipe for gooseberry wine recorded by the diarist John Evelyn. Among his manuscripts, now in the British Library, is a volume of “receipts” (recipes): for the stillroom, the sickroom and the kitchen. Those of cookery are now printed in this book:

The recipes range wide over the repertoire of the seventeenth-century household; from liver puddings to excellent syllabubs. They include items picked up on his travels in Europe, as well as favorites given him by friends, including that for gooseberry wine contributed by Sir Christopher Wren.


Living in southern China does not make it exactly easy for me to get hold of this book, so I have had to compromise. Go here and you will find an excellent recipe . It is more complex than Wren’s, I have no doubt, but fruit wines are all made in basically the same way: mash up the fruit, boil it, when cooled add yeast and sugar, let ferment, strain and bottle. Worth a shot.