Apr 032016


Today is the birthday (1783) of Washington Irving, U.S. author, essayist, biographer, historian, and diplomat of the early 19th century. He is best known for his short stories “Rip Van Winkle” (1819) and “The Legend of Sleepy Hollow” (1820), both of which appear in his book The Sketch Book of Geoffrey Crayon, Gent. His historical works include biographies of George Washington, Oliver Goldsmith and Muhammad, and several histories of 15th-century Spain dealing with subjects including Christopher Columbus, the Moors and Alhambra

Irving made his literary debut in 1802 with a series of observational letters to the Morning Chronicle, written under the pseudonym Jonathan Oldstyle. After moving to England for the family business in 1815, he achieved international fame with the publication of The Sketch Book of Geoffrey Crayon, Gent. in 1819–20. He continued to publish regularly — and almost always successfully — throughout his life, and just eight months before his death (at age 76, in Tarrytown, New York), completed a five-volume biography of George Washington.

Irving, along with James Fenimore Cooper, was among the first American writers to earn acclaim in Europe, and he encouraged U.S. authors such as Nathaniel Hawthorne, Herman Melville, Henry Wadsworth Longfellow, and Edgar Allan Poe. Irving was also admired by European writers, including Walter Scott, Lord Byron, Thomas Campbell, Francis Jeffrey, and Charles Dickens. At a time when authors were either independently wealthy or had other professions, Irving advocated for writing as a legitimate profession in its own right, and argued for stronger laws to protect U.S. writers from copyright infringement in Europe.


“Rip Van Winkle” and “The Legend of Sleepy Hollow” are well known, so I would like to focus on Tales of the Alhambra which put the palace on the map in the 19th century. Shortly after completing a biography of Christopher Columbus in 1828, Irving traveled from Madrid, where he had been staying, to Granada. At first sight, he described it as “a most picturesque and beautiful city, situated in one of the loveliest landscapes that I have ever seen.” Irving was preparing a book called A Chronicle of the Conquest of Granada, a history of the years 1478–1492, and was continuing his research on the topic. He immediately asked the then-governor of the historic Alhambra Palace as well as the archbishop of Granada for access to the palace, which was granted because of Irving’s celebrity status. Aided by a 35-year-old guide, Mateo Ximenes, Irving was inspired by his experience to write Tales of the Alhambra. The book combines description, legend, and narrations of historical events, up through the destruction of some of the palace’s towers by the French under Count Sebastiani in 1812, and the further damage caused by an earthquake in 1821. Throughout his trip, Irving filled his notebooks and journals with descriptions and observations though he did not believe his writing would ever do it justice. He wrote, “How unworthy is my scribbling of the place.”


Let’s begin with the name. Irving (and others) call the palace “THE Alhambra,” which is jarring to my ears because of the inherent redundancy. “Al” in Arabic means “the” – “Alhambra” means “the red (feminine).” So calling it “the Alhambra” translates as “the the red.” Ugh. I’ll use “Alhambra” without the direct article.


Alhambra was completed towards the end of Muslim rule of Spain by Yusuf I (1333–1353) and Muhammed V, Sultan of Granada (1353–1391). The complex is a reflection of the culture of the last centuries of the Moorish rule of Al Andalus, reduced to the Nasrid Emirate of Granada. It is a place where artists and intellectuals had taken refuge as the Reconquista by Spanish Christians won victories over Al Andalus. Alhambra integrates natural site qualities with constructed structures and gardens, and is a testament to Moorish culture in Spain and the skills of Muslim, Jewish, and Christian artisans, craftsmen, and builders of their era. The literal translation of Alhambra, “the red (female),” probably reflects the color of the red clay of the surroundings of which the fort is made. The buildings of Alhambra were originally whitewashed; however, the buildings as seen today are reddish.


The first reference to the Qal‘at al-Ḥamra was during the battles between the Arabs and the Muladies (people of mixed Arab and European descent) during the rule of ‘Abdullah ibn Muhammad (r. 888–912). In one particularly fierce and bloody skirmish, the Muladies soundly defeated the Arabs, who were then forced to take shelter in a primitive red castle located in the province of Elvira, presently located in Granada. According to surviving documents from the era, the red castle was quite small, and its walls were not capable of deterring an army intent on conquering. The castle was then largely ignored until the 11th century, when its ruins were renovated and rebuilt by Samuel ibn Naghrela, vizier to the emir Badis ben Habus of the Zirid Dynasty of Al Andalus, in an attempt to preserve the small Jewish settlement also located on the natural plateau, Sabikah Hill.


Ibn Nasr, the founder of the Nasrid Dynasty, was forced to flee to Jaén to avoid persecution by King Ferdinand III of Castile and the Reconquista supporters working to end Spain’s Moorish rule. After retreating to Granada, Ibn-Nasr took up residence at the Palace of Badis ben Habus in  Alhambra. A few months later, he embarked on the construction of a new Alhambra fit for the residence of a sultan. According to an Arab manuscript since published as the Anónimo de Granada y Copenhague:

This year, 1238 Abdallah ibn al-Ahmar climbed to the place called “Alhambra” inspected it, laid out the foundations of a castle and left someone in charge of its construction…

The design included plans for six palaces, five of which were grouped in the northeast quadrant forming a royal quarter, two circuit towers, and numerous bathhouses. During the reign of the Nasrid Dynasty, Alhambra was transformed into a palatine city, complete with an irrigation system composed of acequias for the gardens of the Generalife located outside the fortress. Previously, the old Alhambra structure had been dependent upon rainwater collected from a cistern and from what could be brought up from the Albaicín. The creation of the Sultan’s Canal solidified the identity of the Alhambra as a palace-city rather than a defensive and ascetic structure.


The Muslim ruler Muhammad XII of Granada surrendered the Emirate of Granada in 1492 without Alhambra itself being attacked when the forces of the Reyes Católicos, King Ferdinand II of Aragon and Queen Isabella I of Castile, took the surrounding territory with a force of overwhelming numbers.

wi1 wi12

The architecture of Alhambra is inspiring, but it is the tile work that draws me. The Alhambra tiles are remarkable in that they contain nearly all, if not all, of the seventeen mathematically possible wallpaper groups (a special kind of tessellation). This is a unique accomplishment in world architecture. M. C. Escher’s visit in 1922 and study of the Moorish use of symmetries in Alhambra tiles inspired his subsequent  artistic work on tessellation. http://www.bookofdaystales.com/m-c-escher/  They have also inspired mathematicians specializing in the geometry of tilings, such as Roger Penrose, http://www.bookofdaystales.com/roger-penrose/ .


Here’s a very simple dish for stuffed eggs from an anonymous Medieval Arabic MS from al-Andalus http://www.pbm.com/~lindahl/articles/veggie.html . The main problem is replicating murri which was a very common fermented condiment used in the Byzantine and Arab world. I use Thai fish sauce as a substitute.

Take as many eggs as thou wilt, and boil them whole in hot water; put them in cold water and divide them in half with a thread. Take the yolks quickly and crush cilantro, put in onion juice, pepper and coriander and beat all this together with murri, oil and salt and mash the yolks with this until it forms a paste. Then stuff the whites with this, insert a small stick into each egg, and sprinkle them with pepper, God willing.

Without precise measures you’ll have to experiment. I used about equal portions (1tsp per egg) of cilantro, chopped onion, black pepper, powdered coriander, oil, and fish sauce. Hard boil eggs, peel them, cut them in half lengthways, and remove the yolks.

Use a blender or food processor to blend together the yolks and condiments. Then refill the yolk section of the boiled whites and sprinkle with freshly ground black pepper.

Jun 172014


Today is the birthday (1898) of Maurits Cornelis Escher, usually referred to as M. C. Escher, Dutch graphic artist. He is best known for his often mathematically inspired woodcuts, lithographs, and mezzotints. These feature impossible constructions, explorations of infinity, architecture, and tessellations.

Escher was born in Leeuwarden, Friesland, in a house that forms part of the Princesseof Ceramics Museum today. He was the youngest son of civil engineer George Arnold Escher and his second wife, Sara Gleichman. In 1903, the family moved to Arnhem, where he attended primary school and secondary school until 1918. He was a sickly child, and was placed in a special school at the age of seven and failed the second grade. Although he excelled at drawing, his grades were generally poor. He also took carpentry and piano lessons until he was thirteen years old. In 1919, Escher attended the Haarlem School of Architecture and Decorative Arts. He briefly studied architecture, but he failed a number of subjects (partly due to a persistent skin infection) and switched to decorative arts. He studied under Samuel Jessurun de Mesquita, with whom he remained friends for years. In 1922, Escher left the school after having gained experience in drawing and making woodcuts.

In 1922, an important year of his life, Escher traveled through Italy (Florence, San Gimignano, Volterra, Siena, Ravello) and Spain (Madrid, Toledo, Granada). He was impressed by the Italian countryside and by the Alhambra, a fourteenth-century Moorish castle in Granada. The intricate decorative designs at Alhambra, which were based on geometrical symmetries featuring interlocking repetitive patterns sculpted into the stone walls and ceilings, were a powerful influence on Escher’s works. He returned to Italy regularly in the following years.

mce alhambra

In Italy, Escher met Jetta Umiker, whom he married in 1924. The couple settled in Rome where their first son, Giorgio (George) Arnaldo Escher, named after his grandfather, was born. Escher and Jetta later had two more sons: Arthur and Jan.

In 1935, the political climate in Italy (under Mussolini) became unacceptable to Escher. He had no interest in politics, finding it impossible to involve himself with any ideals other than the expressions of his own concepts through his own particular medium, but he was averse to fanaticism and hypocrisy. When his eldest son, George, was forced at the age of nine to wear a Ballila uniform in school, the family left Italy and moved to Château-d’Œx, Switzerland, where they remained for two years.

Escher, who had been very fond of and inspired by the landscapes in Italy, was decidedly unhappy in Switzerland. In 1937, the family moved again, to Uccle, a suburb of Brussels, Belgium. World War II forced them to move in January 1941, this time to Baarn, Netherlands, where Escher lived until 1970. Most of Escher’s better-known works date from this period. The sometimes cloudy, cold and wet weather of the Netherlands allowed him to focus intently on his work. For a time after undergoing surgery, 1962 was the only period in which Escher did not work on new pieces.

Escher moved to the Rosa Spier Huis in Laren in 1970, an artists’ retirement home in which he had his own studio. He died at the home on 27 March 1972, aged 73.

In his early years, Escher sketched landscapes and nature. He also sketched insects, which appeared frequently in his later work. His first artistic work, completed in 1922, featured eight human heads divided in different planes. Later around 1924, he lost interest in “regular division” of planes, and turned to sketching landscapes in Italy with irregular perspectives that are impossible in natural form.


Escher’s first print of an impossible reality was Still Life and Street, 1937. His artistic expression was created from images in his mind, rather than directly from observations and travels to other countries. Well known examples of his work include Drawing Hands, a work in which two hands are shown, each drawing the other; Sky and Water, in which light plays on shadow to morph the water background behind fish figures into bird figures on a sky background; and Ascending and Descending, in which lines of people ascend and descend stairs in an infinite loop, on a construction which is impossible to build and possible to draw only by taking advantage of quirks of perception and perspective.


He worked primarily in the media of lithographs and woodcuts, though the few mezzotints he made are considered to be masterpieces of the technique. In his graphic art, he portrayed mathematical relationships among shapes, figures and space. Additionally, he explored interlocking figures using black and white to enhance different dimensions. Integrated into his prints were mirror images of cones, spheres, cubes, rings and spirals. Escher was left-handed.

Although Escher did not have mathematical training—his understanding of mathematics was largely visual and intuitive—Escher’s work had a strong mathematical component, and more than a few of the worlds which he drew were built around impossible objects such as the Necker cube and the Penrose triangle. Many of Escher’s works employed repeated tilings called tessellations. Escher’s artwork is especially well liked by mathematicians and scientists, who enjoy his use of polyhedra and geometric distortions. For example, in Gravity, multicolored turtles poke their heads out of a stellated dodecahedron.


The mathematical influence in his work emerged around 1936, when he journeyed to the Mediterranean with the Adria Shipping Company. He became interested in order and symmetry. Escher described his journey through the Mediterranean as “the richest source of inspiration I have ever tapped.”  After his journey to the Alhambra, Escher tried to improve upon the art works of the Moors using geometric grids as the basis for his sketches, which he then overlaid with additional designs, mainly animals such as birds and lions.


His first study of mathematics, which later led to its incorporation into his art works, began with George Pólya’s academic paper on plane symmetry groups sent to him by his brother Berend. This paper inspired him to learn the concept of the 17 wallpaper groups (plane symmetry groups). Using this mathematical concept, Escher created periodic tilings with 43 colored drawings of different types of symmetry. From this point on he developed a mathematical approach to expressions of symmetry in his art works. Starting in 1937, he created woodcuts using the concept of the 17 plane symmetry groups.

In 1941, Escher summarized his findings in a sketchbook, which he labeled Regelmatige vlakverdeling in asymmetrische congruente veelhoeken (“Regular division of the plane with asymmetric congruent polygons”). His intention in writing this was to aid himself in integrating mathematics into art. Escher is considered a research mathematician of his time because of his documentation with this paper, in which he studied color based division, and developed a system of categorizing combinations of shape, color and symmetrical properties.


Around 1956, Escher explored the concept of representing infinity on a two-dimensional plane. Discussions with Canadian mathematician H.S.M. Coxeter inspired Escher’s interest in hyperbolic tessellations, which are regular tilings of the hyperbolic plane. Escher’s wood engravings Circle Limit I–IV demonstrate this concept. In 1959, Coxeter published his finding that these works were extraordinarily accurate: “Escher got it absolutely right to the millimeter.”

Escher was awarded the Knighthood of the Order of Orange Nassau in 1955. Subsequently he regularly designed art for dignitaries around the world.

In 1958, he published a book entitled Regular Division of the Plane, with reproductions of a series of woodcuts based on tessellations of the plane, in which he described the systematic buildup of mathematical designs in his artworks. He emphasized, “Mathematicians have opened the gate leading to an extensive domain.”


Overall, his early love of Roman and Italian landscapes and of nature led to his interest in the concept of regular division of a plane, which he applied in over 150 colored works. Other mathematical principles evidenced in his works include the superposition of a hyperbolic plane on a fixed 2-dimensional plane, and the incorporation of three-dimensional objects such as spheres, columns and cubes into his works. For example, in a print called Reptiles, he combined two and three-dimensional images. In one of his papers, Escher emphasized the importance of dimensionality and described himself as “irritated” by flat shapes: “I make them come out of the plane.”


Escher also studied topology. He learned additional concepts in mathematics from the British mathematician Roger Penrose (8 Aug 2013). From this knowledge he created Waterfall and Up and Down, featuring irregular perspectives similar to the concept of the Möbius strip.


Escher printed Metamorphosis I in 1937, which was a beginning part of a series of designs that told a story through the use of pictures. These works demonstrated a culmination of Escher’s skills to incorporate mathematics into art. In Metamorphosis I, he transformed convex polygons into regular patterns in a plane to form a human motif. This effect symbolizes his change of interest from landscape and nature to regular division of a plane. His piece Metamorphosis III is wide enough to cover all the walls in a room, and then loop back on to itself.


After 1953, Escher became a lecturer at many organizations. A planned series of lectures in North America in 1962 was cancelled due to an illness, but the illustrations and text for the lectures, written out in full by Escher, were later published as part of the book Escher on Escher. In July 1969 he finished his last work, a woodcut called Snakes, in which snakes wind through a pattern of linked rings which fade to infinity toward both the center and the edge of a circle.


Curl-up or Wentelteefje (original Dutch title) is a lithograph print by M. C. Escher, first printed in November 1951. This is the only work by Escher consisting largely of text. The text, which is written in Dutch, describes an imaginary species called Pedalternorotandomovens centroculatus articulosus, also known as “wentelteefje” or “rolpens”. He says this creature came into existence because of the absence in nature of wheel shaped, living creatures with the ability to roll themselves forward.


The creature is elongated and armored with several keratinized joints. It has six legs, each with what appears to be a human foot. It has a disc-shaped head with a parrot-like beak and eyes on stalks on either side.

It can either crawl over a variety of terrain with its six legs or press its beak to the ground and roll into a wheel shape. It can then roll, gaining acceleration by pushing with its legs. On slopes it can tuck its legs in and roll freely. This rolling can end in one of two ways; by abruptly unrolling in motion, which leaves the creature belly-up, or by braking to a stop with its legs and slowly unrolling backwards.

The word wentelteefje is Dutch for French toast, “wentel” meaning “to turn over”. Rolpens is a dish made with chopped meat wrapped in a roll and then fried or baked. “Een pens” means “belly”, often used in the phrase beer-belly.

There’s a good recipe for rolpens here:



Or there is the ultra-traditional version which resembles haggis in some ways – basically a stomach stuffed with meat and boiled. Recipe and images here:


However, I thought it would also be fun to follow along in the footsteps of my post on Mondrian (http://www.bookofdaystales.com/mondrian/), and create food that resembles Escher’s art.  This pizza appeals to me, taken from this site:



The problem is that this would be really hard to replicate at home (and kudos to the artist). It looks to me as if the designer created a cheese base, and then overlaid cut out pieces of pepperoni.

More promising is the use of cookie cutters with tessellating shapes. As seen in these websites:





mce11  mce10

It seems as if getting the cutters is easy enough. You need to make a cookie dough that keeps its shape while baking, and you need to make at least two contrasting colors. The last URL has a good recipe and an instructional video. Looks like a great deal of fun.